Improving the classification of brain tumors in mice with perturbation enhanced (PE)-MRSI
نویسندگان
چکیده
Classifiers based on statistical pattern recognition analysis of MRSI data are becoming important tools for the non-invasive diagnosis of human brain tumors. Here we investigate the potential interest of perturbation-enhanced MRSI (PE-MRSI), in this case acute hyperglycemia, for improving the discrimination between mouse brain MRS patterns of glioblastoma multiforme (GBM), oligodendroglioma (ODG), and non-tumor brain parenchyma (NT). Six GBM-bearing mice and three ODG-bearing mice were scanned at 7 Tesla by PRESS-MRSI with 12 and 136 ms echo-time, during euglycemia (Eug) and also during induced acute hyperglycemia (Hyp), generating altogether four datasets per animal (echo time + glycemic condition): 12Eug, 136Eug, 12Hyp, and 136Hyp. For classifier development all spectral vectors (spv) selected from the MRSI matrix were unit length normalized (UL2) and used either as a training set (76 GBM spv, four mice; 70 ODG spv, two mice; 54 NT spv) or as an independent testing set (61 GBM spv, two mice; 31 ODG, one mouse; 23 NT spv). All Fisher's LDA classifiers obtained were evaluated as far as their descriptive performance-correctly classified cases of the training set (bootstrapping)-and predictive accuracy-balanced error rate of independent testing set classification. MRSI-based classifiers at 12Hyp were consistently more efficient in separating GBM, ODG, and NT regions, with overall accuracies always >80% and up to 95-96%; remaining classifiers were within the 48-85% range. This was also confirmed by user-independent selection of training and testing sets, using leave-one-out (LOO). This highlights the potential interest of perturbation-enhanced MRSI protocols for improving the non-invasive characterization of preclinical brain tumors.
منابع مشابه
Can proton MR spectroscopic and perfusion imaging differentiate between neoplastic and nonneoplastic brain lesions in adults?
BACKGROUND AND PURPOSE Noninvasive diagnosis of brain lesions is important for the correct choice of treatment. Our aims were to investigate whether 1) proton MR spectroscopic imaging ((1)H-MRSI) can aid in differentiating between tumors and nonneoplastic brain lesions, and 2) perfusion MR imaging can improve the classification. MATERIALS AND METHODS We retrospectively examined 69 adults with...
متن کاملMULTI CLASS BRAIN TUMOR CLASSIFICATION OF MRI IMAGES USING HYBRID STRUCTURE DESCRIPTOR AND FUZZY LOGIC BASED RBF KERNEL SVM
Medical Image segmentation is to partition the image into a set of regions that are visually obvious and consistent with respect to some properties such as gray level, texture or color. Brain tumor classification is an imperative and difficult task in cancer radiotherapy. The objective of this research is to examine the use of pattern classification methods for distinguishing different types of...
متن کاملClassification of Brain Tumor by Combination of Pre-Trained VGG16 CNN
In recent years, brain tumors become the leading cause of death in the world. Detection and rapid classification of this tumor are very important and may indicate the likely diagnosis and treatment strategy. In this paper, we propose deep learning techniques based on the combinations of pre-trained VGG-16 CNNs to classify three types of brain tumors (i.e., meningioma, glioma, and pituitary tumo...
متن کاملOptimization of Brain Tumor MR Image Classification Accuracy Using Optimal Threshold, PCA and Training ANFIS with Different Repetitions
Background: One of the leading causes of death is brain tumors. Accurate tumor classification leads to appropriate decision making and providing the most efficient treatment to the patients. This study aims to optimize brain tumor MR images classification accuracy using optimal threshold, PCA and training Adaptive Neuro Fuzzy Inference System (ANFIS) with different repetitions.Material and Meth...
متن کاملImproving Effect of Ethyl Acetate Fraction of Tanacetum Parthenium Against Brain Oxidative Damage in Pentylenetetrazole-Induced Seizure Model In Mice
Aims: Oxidative stress plays an important role in pathogenesis of seizure. In this study the effect of ethyl acetate fraction of Tanacetum parthenium against brain oxidative damage in pentylenetetrazole-induced (PTZ) seizure model in mice was investigated. Materials and methods: In this experimental study, mice were distributed into 6 groups: 1) Control, 2) PTZ, 3-6) Fraction+PTZ. The animals ...
متن کامل